
Implementation and Performance of the Simon

and Speck Lightweight Block Ciphers on ASICs

Ray Beaulieu
Douglas Shors
Jason Smith

Stefan Treatman-Clark
Bryan Weeks
Louis Wingers

Crypto-Design Office
National Security Agency

Abstract. Simon and Speck are families of lightweight block ciphers
proposed in June 2013 by the US National Security Agency. Here we
discuss ASIC implementations of these algorithms, presenting in some
detail how one implements the smallest bit-serial versions of the al-
gorithms. We also give area and throughput results for a variety of
implementations—bit serial, iterated, and partially and fully pipelined.
To the best of our knowledge, each version of Simon admits implementa-
tions with the smallest area of any comparable block cipher with a flex-
ible key, and Speck is close behind: at the 64-bit block/128-bit key size,
for example, both can be realized in under 1000 GE. More surprisingly,
however, since they were intended for use on constrained platforms, Si-
mon and Speck allow for extremely high efficiency and high-throughput
implementations; each version of Simon, in particular, has the highest
efficiency (throughput divided by area) of any comparably sized block
cipher we’ve seen—lightweight or not.

Keywords: simon, speck, block cipher, lightweight, cryptography, in-
ternet of things, ASIC, hardware

Note. This paper was written in the Spring and Summer of 2014. It was submitted
to a conference and was not accepted, and subsequently was not published. It
is posted here, with a few minor edits, because it provides some more detail
regarding the implementations we discuss in our original paper [1].

1 Introduction

Lightweight cryptography has been an active area of cryptographic research in
recent years, and many lightweight block ciphers have been proposed. Since there
is no single, obvious lightweight application for these designs to target, it’s not
surprising that different designs seek to optimize performance in different areas
within the design space: high throughput in software or small area on ASICs or

II

FPGAs or small code size on microcontrollers or. . . . Unfortunately, good per-
formance in one area often signals poor performance in others, and this is likely
to cause problems when communication is required across a network consisting
of many disparate devices. Such multi-platform applications are likely to be the
rule rather than the exception for new applications of lightweight cryptography.

Simon and Speck are block cipher families that promise high performance
across a range of platforms. In this paper, we focus on their ASIC performance.
We provide details regarding our small-area implementations of these algorithms:
the algorithms are capable of being implemented with extremely small footprints,
where the cost of the flip-flops necessary to store state accounts for up to about
90% of the total area. To demonstrate one aspect of the flexibility of these
algorithms, we also provide data showing that, if area is not tightly constrained,
then it is possible to obtain high-throughput implementations with performance
surpassing that of algorithms explicitly designed for this sort of application.

Here is a sample of our results: For applications requiring a small footprint,
the 64-bit block/128-bit key versions of Simon and Speck can be implemented
in 958 gate equivalents (GE) and 996 GE, respectively. These are smaller than
the 80-bit-key version of the leading hardware-oriented cipher PRESENT, which
requires 1030 GE [3]. For low throughput applications, the 128-bit block/128-bit
key versions of Simon and Speck can be implemented with 1234 and 1280 GE,
respectively. Compare this with AES-128, with a minimal area of 2400 GE [8].

When high throughput is necessary (imagine a heterogeneous network, in-
cluding both constrained and high-speed devices), Simon and Speck offer per-
formance exceeding that of traditional algorithms such as AES. Helion offers a
small AES core with a throughput of 650 Mbps and an area of 9500 GE, for
an efficiency1 of 68 [6]. With the same block and key size, Speck achieves 3.53
Gbps at 9662 GE, for an efficiency of 365, and Simon attains a throughput of
3.98 Gbps using 7279 GE, for an efficiency of 547. A fully pipelined (and fully
key-agile) Simon 128/128 achieves an efficiency of 731, which is the highest we
have seen for any 128-bit block cipher with a 128-bit key.2. Pipelined Speck
128/128 has an efficiency of 424, better than the highly efficient CLEFIA [10],
whose (scaled) efficiency is 278.3 High-throughput implementations of Simon
and Speck are discussed further in Section 4.

2 ASIC Implementations

A brief review of the specifics of Simon and Speck is given in subsequent sec-
tions; complete details can be found in [1]. For the moment, we note that each

1 Efficiencly is throughput in kbps divided by area in gate equivalents (GE); a GE is
the area of the smallest NAND gate in the cell library under consideration.

2 If key agility is not required (i.e., if it’s OK to take multiple clock cyles to change
keys), then efficiencies can be raised further, to 838 for Simon128/128 and 605 for
Speck128/128. See Section 4.

3 CLEFIA reaches 3.74 Gbps using 9330 GE, at 90nm; efficiency = 401 at 90nm,
scaling to ≈ 401 · 9/13 = 278 at the 130nm feature size used in our work.

III

algorithm has ten variants, with block sizes ranging from 32 bits to 128 bits, and
key sizes from 64 bits to 256 bits.

While a whole range of implementations are possible, we’ll focus on the two
extreme ends of the spectrum: (1) very small bit-serial implementations where
area is tightly constrained and throughput is minimally important, and (2) high-
throughput, fully pipelined implementations where efficiency is maximized, and
area is not constrained. Many other implementations have been investigated
(iterated, partially pipelined, etc.), and although we don’t have the space to
discuss them here, some of the results can be found in Tables 1 and 2.

3 Simon

Each of Simon and Speck has ten variants, parameterized by block and key
size. Simon2n/wn refers to the variant of Simon with block size 2n and wn bits
of key, where n is one of 16, 24, 32, 48, or 64 and w is either 2, 3 or 4 (though
not all fifteen possibilities are defined).

The smallest version of Simon, Simon 32/64, requires a total of T = 32
rounds; the largest, Simon 128/256, T = 72 rounds. Each instance of Simon
produces ciphertext from plaintext by applying the following Feistel map for T
rounds:

Rk(x, y) = (y ⊕ (Sx&S8x) ⊕ S2x ⊕ k, x),

where k is the round key, ⊕ denotes bitwise XOR, & is a bitwise AND, and Sj is a
left circular shift by j bits, all on appropriately-sized words.

The Simon key schedules vary slightly depending on the number of key words
w. For Simon 2n/wn, round keys k0, . . . , kw−1 are set equal to the original w
words of key, and for 0 ≤ i < T − w the round key ki+w is given by

ki+w =


ci ⊕ ki ⊕ S−3(ki+1)⊕ S−4(ki+1), if w = 2,

ci ⊕ ki ⊕ S−3(ki+2)⊕ S−4(ki+2), if w = 3,

ci ⊕ ki ⊕ ki+1 ⊕ S−1(ki+1)⊕ S−3(ki+3)⊕ S−4(ki+3), if w = 4.

Here, ci is an n-bit round constant whose least significant bit is determined by
a 5-bit version-dependent LFSR, with all other bits fixed through all rounds.
Details can be found in [1].

4 Pipelined Simon

Although designed primarily for use on constrained platforms, Simon and Speck
also support extremely high throughput implementations. And because high-
throughput pipelined versions are very easy to understand and describe (all
the control logic, in particular, disappears), we lead off by discussing pipelined
implementations of Simon.

There are two sorts of pipelining we consider, a key-agile and a non-key-agile
type. In both cases the round function is fully unrolled, so a T -round algorithm

IV

with a 2n-bit state requires T +1 2n-bit registers to buffer the input and hold all
the intermediate values of the state, along with T copies of the round function.
For the key-agile version, we also fully unroll the key expansion, so—for an
algorithm using w n-bit words of key, i.e., with a key size of wn bits—T wn-bit
registers are required to hold the intermediate states of the key schedule. Also
required are T − 1 instantiations of the key schedule logic. In the non-key-agile
version, we implement one copy of the key schedule logic, together with enough
enable flip-flops to hold all the round keys.

For both versions, after the pipeline is full, we produce one encryption per
clock cycle. In the key-agile case, the key can be different with each encryption,
after an initial latency (here T + 1 cycles) necessary to fill the pipeline. In this
case we can exclusively use the cheaper D flip-flops, as each register gets input
from only one place.

In the non-key-agile case, larger enable flip-flops are needed to store the round
keys, but despite this we save considerably on area because we only require one
copy of the key schedule logic. By loading round keys in through the bottom of
the stack of key storage registers and letting them propagate up, we minimize
muxing, at the expense of raising the latency to 2T + 1 cycles (T + 1 to load the
key and generate round keys, and T + 1 to fill the data pipeline, with plaintext
loading happening in parallel with the last round key load), and this overhead
will be imposed whenever the key is changed. This, of course, is not the only way
of doing things: at the cost of additional muxing, the latency could be lowered
to T + 1 cycles.

We also considered pipelined versions of the algorithms which computed two
or more rounds per clock cycle. Here the depth of the pipeline is reduced, with a
consequent area reduction. At the same time, however, the maximum clock speed
is lowered. For some versions of Simon, two-rounds-per-clock implementations
are the most efficient.

A straightforward key-agile pipelined Simon 128/128, for example, at one
round per clock cycle, is easy to model. It requires 2 · 128 · 69 − 64 = 17600 D
flip-flops, 68 · 64 = 4352 NANDs, and 3 · 64 · 68 + 2 · 64 · 67 = 21504 XOR/XNORs.
There is no further control, and the constants in the key schedule, which are
fixed for each round, are absorbed into XORs and XNORs. In the cell library we
used, XOR/XNORs are 2 GE, and D flip flops are 4.25 GE, so the area is 17600 ·
4.25 + 4352 · 1.00 + 21504 · 2.00 = 122160 GE, which is exactly what we achieved
for an actual VHDL implementation, when there was no clock constraint. Note
that extremely high clock speeds can be achieved for such an implementation,
because the critical path involves just a few XORs and an AND.

In the general case, we require (w + 2)(T + 1)n − w(w − 1)n/2 D flip-flops,
nT NANDs, and 3nT + (2 + [w = 4])(T − w + 1)n XOR/XNORs.

A basic non-key-agile, pipelined Simon 128/128, one round per clock, uses
128 · 69 = 8832 D flip-flops for the data path, 64 · 68 + 128 enable flip-flops (6
GE each) to store the key and the round keys, 68 · 64 = 4352 NANDs, 3 · 64 ·
68 + 2 · 64 = 13184 XOR/XNORs, and 100 or so GE of control logic. This totals to
8832 · 4.25 + 4480 · 6.00 + 13184 · 2.00 + 100 = 90884 GE.

V

In the general case we require 2n(T+1) D flip-flops, n(T+w) enable flip-flops,
nT NANDs, and 3nT + (2 + [w = 4])n XOR/XNORs.

If decryption functionality is necessary, it can easily by supplied in the non-
key-agile setting using just the encryption hardware, with just a few hundred
additional GE of control (but with 3T+1 cycle latency). The resulting circuit will
load key into key registers, step forward T times, reverse the order of the words,
and then step T times—effectively backing up the key schedule—to generate and
store the decrypt round keys. The ciphertext words to be decrypted are loaded
in reverse order, and plaintext is read out in reverse order.

The highest efficiency we obtained for Simon128/128 was 838 for a pipelined
non-key-agile implementation. We have not implemented the joint encrypt/decrypt
version, but as we’ve noted, this will add only a few hundred gates to the 104790,
resulting in an efficiency exceeding 830. The highest efficiency reported in the
literature (that we could find) is 401 for CLEFIA encrypt+decrypt [10], which
scales to approximately 401 · 9/13 ≈ 278 at the 130nm feature size we used. The
highest reported efficiency for AES encrypt+decrypt is 174 at 90nm (= 121 at
130nm). Simon’s efficiency is 3 times that that of CLEFIA and nearly 7 times
that of AES.

Comparing Simon 128/256 to the stream cipher SALSA20, for example,
yields an even starker contrast. The highest efficiency we’ve seen reported for
SALSA20 is 35.9 (669 Mbps at 18626 GE) [2]; a pipelined non-key-agile imple-
mentation of Simon128/256 encrypt+decrypt can achieve 87.2 Gbps at 110875
GE, for an efficiency of 786—a 20-fold improvement.

5 Serialized Simon

In this section we discuss our smallest, bit-serial implementations of Simon,
which we described in VHDL using generics to allow selection of the block size,
key size, and amount of serialization. We also discuss how we modeled our imple-
mentations prior to using VHDL aid in the search for further optimizations. The
modeling described was extremely helpful in developing our VHDL code, as we
had very clear expectations of how much area should be required for an optimal
implementation, and we were ultimately able to match these values quite closely.

See the Appendix (in particular, Table 1), where we report areas for small,
serialized implementations of the algorithms.

The designs were not taken through place and route, therefore the estimates
do not include factors like clock tree distribution, power distribution, and buffer-
ing of large fanout signals. However, given the small size of the designs these
factors should be minimal.

5.1 Serializing the round function

Serialization refers to the ability to build a circuit that computes a fraction of a
round in a clock cycle. This allows for reduced-area implementations, but at a
cost to throughput, as many cycles may be needed to complete an encryption.

VI

Serial implementations are parameterized by the number of bits b updated
per clock cycle. For an unserialized or iterated implementation, b is equal to the
word size n for Simon and 2n for Speck. Simon and Speck admit serial imple-
mentations for any integral value of b, but these implementations are particularly
efficient if b is a divisor of the word size n, and those are the implementations
we consider in this paper.4

Figure 1 shows (a version of) the most aggressive level of serialization for
Simon 2n, where one bit is updated per clock cycle, i.e., b = 1. We use a total
of 2n clock cycles to load the plaintext, and then nT cycles to accomplish the
encryption. The b = 1 case is a good place to start, as understanding this
case allows one to understand serialization for b > 1. (For example, a b = 2
serialization can be obtained simply by imagining how one double steps the
diagram of Figure 1.)

2n−1 2n−2 2n−3

· · ·
2n−8 2n−9

· · ·
n n−1 n−2 n−3

· · ·
n−8 n−9

· · ·
1 0

m1

m8

m2

[i≥ 2n] 0 1

0 1

0 1

0

1

Pi

Ci−nT ki

Fig. 1. Simon round function serialization, one bit at a time. The clock steps from
i = 0 to (T + 2)n. Pi denotes the ith bit of plaintext, loaded at time i. ki represents
the round key bit required at time i. The control bits mk into the MUXes are given by
counter-dependent values mk = mk(i) = [(i mod n) ≥ k] (where [a] = 1 if a, else 0).
Ciphertext bits are output during the final 2n cycles of encryption.

We note that while 1-bit serialization is the easiest case to understand and
think about, in many cases one may prefer 2, 3, or even 4-bit serialization for
an area-constrained application, which would double, triple, or quadruple the
throughput, at the cost of only a handful of additional gates. See Table 1.

It’s apparent from the diagram that very little combinational logic is nec-
essary to implement Simon: The entire “cryptographic portion” of Figure 1
consists of a single AND gate and three XOR gates. Three MUXes are necessary as
the bits that feed into these gates are sometimes on the left half of the picture,
and sometimes on the right, depending on the clock. In the cell library we used,

4 For b a nondivisor of n, a slightly different approach, involving a swap of the high
byte of the left and right words, is needed to keep the amount of MUXing under control.

VII

ANDs are 1.25 GE, XORs are 2, and MUXes are 2.25. The combinational logic here
requires just 3·2.25+3·2+1.25 = 14 GE. We will push forward this running gate
count to get an estimate of the size of the entire Simon circuit, but we’ll limit
this model to only the simplest of logic gates. (An actual VHDL implementation
will make use of a full cell library and likely realize a reduction in this area.)

The vast majority of the circuit area in Figure 1 is devoted to holding the
state. For this we need 2n flip-flops. One of these is a scan flip-flop, which can
take input from two places, and the others are smaller D flip-flops. Scan flip-flops
are used initially to load plaintext and subsequently to receive values updated
by the combinational logic, while D flip-flops update their contents in exactly
the same way at each tick of the clock. Scan flip-flops in our cell library cost
6.25 GE and D flip-flops cost 4.25 GE, so the total area for the flip-flops is
6.25 + (2n− 1) · 4.25 = 17n

2 + 2 GE.

5.2 Serializing the key schedule

The key schedule diagram is also quite simple, The combinational logic required
for everything except the constant add amounts to 2 MUXes and 3 XORs for the 2-
and 3-word key schedules, and an additional 2 MUXes and 2 XORs for the 4-word
key schedules. The diagram for the special case of the 2-word key schedule is
shown in Figure 2. If w denotes the number of words in the key schedule, then, a
total of 10.5 + 8.5 · [w = 4] GE5 are required for the key schedule combinational
logic. Again, the major cost is for the flip-flops: one scan flip-flop for loading
purposes, and an additional nw − 1 D flip-flops. This area is 17n

4 w + 2 GE.
Loading the entire key requires nw clock cycles, but after just n cycles, the

first word of key is available for use. To keep things in sync with the plaintext
loading, we will wait until t = 2n to start reading out key bits and performing
encryption steps.

5.3 Serialized control

Some further logic is required for the control and for the round constant appear-
ing in the key schedule. Specifically: (1) five flip-flops and a few XORs for the
5-bit linear feedback shift register (LFSR) which generates the sequence of low
bits used in the round constant (the LFSR doubles as state required to count
steps of the cipher), (2) two XORs and an AND in order to accomplish the con-
stant add in the key schedule, (3) a 1-up counter large enough so that, together
with the LFSR, we can generate enough state to count to 2n+ nT (loading and
encrypting). This requires a dlog2(n(T +2)/31)e-bit counter. (4) Finally, control
for the MUXes needs to be computed. This control and the circuitry to step the
counter amounts to about a dozen ANDs and half a dozen XORs. A rough estimate,

5 Here [x] = 1 if x, else 0.

VIII

2n−1 2n−2 2n−3

· · ·
n+4 n+3 n+2 n+1 n n−1 n−2

· · ·
4 3 2 1 0

mn−3 mn−4

[i≥ 2n]

0 1 0 1

0

1

Ki

consti

ki

Fig. 2. Simon (two-word) key schedule serialization, one bit at a time; other sizes are
similar. The clock steps from i = 0 to (T + 2)n. consti represents the constant bit
required at time i, Ki the key bit to be loaded at time i, and ki the round key bit
produced at time i. The control bits mk into the MUXes are given by mk = mk(i) =
[(i mod n) ≥ k] (where [a] = 1 if a, else 0).

ignoring unavoidable (but minor) case-dependent details, is that all this requires
55 + dlog2(n(T + 2)/31)e GE.

Our estimate for the total area, then, for the b = 1 serialized implementation
of Simon2n/wn is about

17n

4
· (w + 2) +

17

2
· [w = 4] +

25

4
· dlog2(n(T + 2)/31)e+ 83.5

gate equivalents. The throughput is 2n
n(T+2) bits per clock cycle, 200n

n(T+2) kbps for

a 100 kHz clock. See Table 1 for actual areas of these implementations.
This formula agrees with our actual results for the b = 1 serialized versions of

Simon to within about 15 GE in every case. It turns out that for this aggressive
level of serialization, 91% to 96% of the area required goes toward flip-flops to
hold the state, key, 5-bit LFSR, and 1-up counter.

We’d like to point out an additional subtlety with implementing the LFSR
that determines the round constant. Depending upon the block size and the level
of serialization, there are two natural ways to do this. The simplest way is to
step the register once per round, exactly as in the algorithm description. This is
conceptually simple, and takes advantage of the very lightweight stepping rule
given for the counter, but does require the use of enable flip-flops so that values
can be kept fixed for the duration of a round. In some instances, this yields the
lowest-area implementation.

Another approach, loosely illustrated in Figure 3, is to step the register once
with each clock cycle, rather than stepping it only once per completed round.
This requires the use of a suitable power of the original linear update map, chosen
so that after stepping during each clock cycle, we’ve effectively carried out just

IX

L

7 6 5 4 3 2 1 0

LFSR

1-up counter

consti

m8

m2

m1

Fig. 3. Simon 128/128, one bit at a time: control. Other sizes are similar. The 6-bit
counter needed to track bits within a round is extended by 2 bits so that enough state
is present to count up to the requisite (68+2) ·64 steps. Additional control bits needed
for the MUXes in the key schedule (mn−3 and mn−4) are not shown. Also not shown are
control values signaling the end of loading and the beginning of cipher output.

one step of the original map. In the special case of our running example, Simon
128/128 serialized at b = 1 bit per clock cycle, the linear map that accomplishes
this is L = U16, where U is the linear map that does the 5-bit LFSR stepping.
(This works since L64 = U16·64 mod 31 = U .) To produce the bits needed in the
correct order for the bit-serial version, we output ((0, 0, 0, 0, 1)Li (0, 0, 0, 0, 1)t⊕
i6)m1) ⊕ m2, where i is an 8-bit counter, ij is its jth bit, and c denotes the
complement of the bit c. mk = [(i mod 64) ≥ k], which equals the OR of the set
{i5, i4, · · · , i`} if k = 2`. Implementing this particular choice of L requires a fair
amount of combinational logic, and so for this case the simple method of stepping
the LFSR only once per round probably produces the smaller implementation.
In general, however, it’s worth considering both possibilities and allowing the
hardware simulator to determine which is optimal.

6 Speck

Although Speck was optimized for software performance, in keeping with our
design goals, hardware performance was not neglected. For area critical applica-
tions, Speck has ASIC implementations which are nearly as small as those of
Simon and smaller than those of the existing hardware-optimized (flexible key)
lightweight block ciphers.

The Speck family of block ciphers supports ten variants, using the same
combinations of block, and key size as Simon. The key dependent Speck round
function is defined by

Rk(x, y) = ((S−α(x) + y)⊕ k, Sβ(y)⊕ (S−α(x) + y)⊕ k),

X

where k is the round key, ⊕ denotes bitwise XOR, + means addition modulo 2n

and Sj and S−j represent left and right circular shifts, respectively, by j bits.
α = 7 for Speck32/64, and α = 8 for all other versions. In each case β = α− 5.

The round function is applied T = 22 times for the smallest variant, Speck
32/64, all the way up to T = 34 times for the largest variant, Speck128/256.

The Speck key schedule makes use of the Speck round function in a straight-
forward manner and is described Section 6.3.

6.1 Pipelined Speck

As with Simon, we implemented key-agile and non-key-agile pipelined versions
of Speck. (Refer to Section 4 for a discussion of what this means.) For Simon,
we estimated areas for these implementations, and we could do the same for
Speck. However, this becomes a bit more complicated, and in particular depends
on area-vs.-throughput considerations that affect the choice of adder. Because
of space constraints we have omitted those estimates here.

We note that the most efficient pipelined versions of Speck always compute
one round per clock cycle. See Table 2. Also observe in the table that in passing
from the key-agile to the non-key-agile version, a slightly larger improvement
is realized than was the case for Simon; this is because Speck has a heavier
key schedule than Simon, so more is to be gained by removing the multiple
instantiations of it needed for the key-agile pipeline.

6.2 Serializing the round function

The Feistel structure of Simon facilitated our bit-serial implementation, as an
entire word remained unchanged through the course of a round. Speck, on the
other hand, is not a proper Feistel-stepping block cipher. As noted in [1], though,
we can think of Speck as “the composition of two Feistel-like maps,” and it is
easiest to consider these one at a time, and then put them together.

Specifically, we view Rk(x, y) as the composition of the following two maps:

f1(x, y) = (Sα(y), (S−α(x) + y)⊕ k);

f2(x, y) = (y, S−5(x)⊕ y).

For the b = 1 serialization, we process these two steps in n cycles each, and so a
single round is executed in the same number of cycles as the block size. This is
twice the number of cycles Simon required. This is perhaps not surprising, since
the number of rounds required for each version of Speck is quite close to half
the number of rounds required for the similarly-sized version of Simon.

The task of simultaneously conceptualizing the 1-bit serializations of both
Simon and Speck is made a little easier if the diagrams for the two logics are as
similar as possible. In order to create a diagram for Speck that closely mimics
Figure 1, we choose to reverse the usual order of the pair of state registers (the
words x and y appearing in Rk, f1 and f2), viewing y as the bits in positions
2n− 1, 2n− 2, . . . , n, and x as the bits in positions n− 1, n− 2, . . . , 0.

XI

Given this notational convention, the plaintext (x, y) is shifted into our 2n-
bit state beginning with the least significant bit of x, and continuing through the
most significant bit of y. Before sketching out the entire circuit, we first diagram
our separate, fairly simple, implementations of f1 and f2.

2n−1 2n−2 n n−1 n−2 α α−1 0

· · · · · · · · ·

ki ci carry bit

Fig. 4. Serialized, one-bit-per-clock implementation of the partial Speck round func-
tion f1 : (x, y) 7→ (Sα(y), (S−α(x)+y)⊕k). The green rectangle represents a full adder,
which takes as input two bits to be added, together with a carry bit, and returns the
sum bit and the next carry bit.

Figure 4 shows a circuit for computing f1. Note the word stored in positions
n − 1, n − 2, . . . , 0 is slowly overwritten by a left-shifted version of the word
originally stored in positions 2n − 1, 2n − 2, . . . , n. The result of the modular
addition and the XORed key is accumulated in position 2n− 1.

2n−1 2n−2 n n−1 n−2 5 4 3 0

· · · · · · · · ·
0

1

0

1

0

1

0

1

mn−5 mn−5 mn−5

mn−5

Fig. 5. Serialized, one-bit-per-clock implementation of the partial Speck round func-
tion f2 : (x, y) 7→ (y, S−5(x)⊕ y). The 5 rightmost enable flip flops allow the contents
to be “frozen” for the first n− 5 of n steps; here mk = mk(i) = [i ≥ k (mod n)].

Figure 5 illustrates the computation of the second function f2, which is fur-
ther split into two parts. In the first part, the least significant 5 bits of the state

XII

are kept fixed and the MUX selects the value of bit 5 as input to the XOR. During
the final 5 clock cycles, the state resumes its normal left-to-right motion, and
the MUX selects bit 0 as input to the XOR. Note that this portion of the algorithm
becomes more difficult conceptually when multiple bits are processed per cycle,
and additional MUXing is required to prevent the least significant 5 bits of the
state from being overwritten until they are needed at the end of the round.

The notional hardware that combines loading (2n cycles suffice to load the
plaintext and enough key to start encrypting and stepping the key schedule)
and both computation steps is illustrated in Figure 6. The input to bit position
2n− 1 is interpreted as ciphertext during the final 2n cycles of encryption.

2n−1 2n−2 n n−1 n−2 α α−1 5 4 3 0

· · · · · · · · · · · ·

ci

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 1

0

1

q q q
[i≥2n]

MnMn

M2n−5

carry bitki

Pi

Ci−2nT
Mn

Fig. 6. One-bit-at-a-time serialized Speck round function. This figure combines the
previous two, so that n steps of f1 can be computed, followed by n steps of f2. The
clock steps from i = 0 to (2T + 2)n. The control bits are defined in terms of Mk =
Mk(i) = [i ≥ k (mod 2n)]. Here q = M2n−5 OR Mn, so that the contents of the right
five enable flip flops are frozen in steps n, n+1, . . . , 2n−6 during each round of 2n steps.

6.3 Serializing the key schedule

Unlike Simon, the Speck key schedule reuses the round function, but with
a counter value in place of the round keys. Since there may be more than two
words of key, one or more of the words stored in the wn key flip-flops will remain
unchanged at the end of the round. Specifically, we break the key schedule map
into the composition g2 ◦ g1, where g1 and g2 are defined differently depending
upon the number of words of key w.

w g1 g2

2 (Sα(b), (S−α(a) + b)⊕ ctr) (b, b⊕ S−5(a))
3 (a, Sα(c), (S−α(b) + c)⊕ ctr) (c, a, c⊕ S−5(b))
4 (a, b, Sα(d), (S−α(c) + d)⊕ ctr) (d, a, b, d⊕ S−5(c))

XIII

In cases where an entire word of key state is held constant, we prefer to rotate
the word in place rather than introducing n additional large enable flip-flops.
This likely uses more power, but saves area.

6.4 Serialized control

The primary role of the control block in Speck is to determine when encryption
has completed. Since Speck makes use of the round number in the key schedule,
an integer counter is used to track the current round rather than a potentially
more efficient solution like a shift register. The size of this counter is tailored to
the number of rounds used for a particular combination of block and key size
and is therefore 5 or 6 bits wide.

Serialized implementations must also track progress within a round and de-
termine when a round has been completed. In this implementation this is also
done with an integer counter.

As with Simon, we can estimate the area required for these 1-bit serialized
versions of Speck. The round function requires roughly 8 · 254 + (2n− 8) · 174 +
2 + 23

4 + 2 · 94 GE, the key schedule about (8 +w− 2) · 254 + (wn− (8 +w− 2)) ·
17
4 + 2 + 23

4 + 2 · 94 GE, and the control about C · 254 + (2C − 2) + (2C − 2)2 GE,
where C = dlog2(2n(T + 2))e is the size of the counter. In fact this yields a very
slight overestimate of the results we get (less than 10 GE in all but one case),
presumably due to optimizations we haven’t accounted for here.

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
Simon and Speck Families of Lightweight Block Ciphers. Cryptology ePrint Archive,
Report 2013/404 (2013). http://eprint.iacr.org/.

2. Bernstein, D. Snuffle 2005: the Salsa20 encryption function. cr.yp.to/snuffle.

html.

3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007, LNCS vol. 4727, pp. 450–466.
Springer, Heidelberg (2007).

4. Cannière, C.D., Dunkelman, O., Knežević, M.: KATAN and KTANTAN - A Family
of Small and Efficient Hardware-Oriented Block Ciphers. In: CHES 2009, LNCS vol.
5747, pp. 272–288. Springer, Heidelberg (2009).

5. Gong, Z., Nikova, S., Law, Y.W..: KLEIN: A New Family of Lightweight Block
Ciphers. In: Juels, A., Paar, C. (eds.) RFID. Security and Privacy, LNCS vol. 7055,
pp. 1–18 (2012).

6. Helion Technology Ltd.: Standard AES cores. Available at http://www.

heliontech.com/aes_std.htm.

7. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A Block
Cipher for IC-printing. In: Mangard, S., Standaert, F. (eds.) CHES 2010, LNCS vol.
6225, pp. 16–32, Springer, Heidelberg (2010).

XIV

8. Moradi, A., Poschmann, A., Ling, S., Parr, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Patterson, K.G. (ed.)
Advances in Cryptology — EUROCRYPT 2011, LNCS vol. 6632, pp. 69–88, Springer,
Heidelberg (2011).

9. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011,
LNCS vol. 6917, pp. 342–357. Springer, Heidelberg (2011).

10. Sugawara, T., Homma, N., Aoki, T., Satoh, A.: High-performance ASIC Imple-
mentations of the 128-bit Block Cipher CLEFIA. In: Circuits and Systems, ISCAS
2008, pp. 2925–2928.

11. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight,
Versatile Block Cipher. In: Leander, G., Standaert, F. (eds.) ECRYPT Workshop on
Lightweight Cryptography, pp. 146–169. November 2011. Available at http://www.

uclouvain.be/crypto/ecrypt_lc11/static/post_proceedings.pdf.
12. Wu W., Zhang, L: LBLOCK: A Lightweight Block Cipher. In: ACNS 2011, LNCS

vol. 6715, pp. 327–344, Springer, Heidelberg (2011).
13. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC — A Block Cipher

Suitable for Electronic Product Code Encryption. In: Lin, D., Tsudik, G., Wang, X.
(eds.) CANS 2011, LNCS vol. 7092, pp. 76–97. Springer, Heidelberg (2011).

A ASIC Performance

Table 1 shows results for a variety of small ASIC implementations for the Simon
and Speck encryption algorithms (since one would typical use encrypt-only
modes in lightweight cryptography, i.e., ones which never invoke the decryption
algorithm). The VHDL code in both cases was synthesized in Synopsys Design
Compiler version 2012.06, and a commercial 0.13µm2 CMOS library was used
as a synthesis target. Area results were converted to gate equivalents by dividing
the reported area by the area of the smallest drive-strength 2-input NAND gate.

All of the data in Table 1 shows our results assuming a clock speed of 100
kHz. (We note that this clock constraint is very easily met by almost any conceiv-
able implementation of the algorithms.) This data shows (1) the smallest-area
implementations we were able to achieve for various levels of serialization b, b
dividing the word size; (2) the smallest areas for iterated, one-round-per-clock,
implementations (which update n bits for Simon and 2n bits for Speck, where n
is the word size); and results for slightly larger, but higher-efficiency, implemen-
tations. In the latter case, we allowed up to 6 rounds per clock cycle for Simon
and 3 for Speck, and chose the most efficent implementation we obtained.

XV

Table 1: Small-area hardware performance: serialized and one-
round-per-clock ASIC implementations of Simon and Speck. Area
is given in GE, and throughput is at a clock speed of 100 kHz.

Simon Speck

block/
key size

bits/
cycle

area
(GE)

tput
(kbps)

eff area
(GE)

tput
(kbps)

eff

32/64 1 523 5.6 0.011 580 4.2 0.007
2 535 11.1 0.021 642 8.3 0.013
4 566 22.2 0.039 708 16.7 0.026
8 627 44.4 0.071 822 33.3 0.041

16/32 722 88.9 0.123 850 123.1 0.145
4n/3n 1456 355.6 0.244 1643 355.6 0.217

48/72 1 631 5.1 0.008 693 4.3 0.006
2 639 10.3 0.016 752 8.5 0.011
3 648 15.4 0.024 777 12.8 0.016
4 662 20.5 0.031 821 17.0 0.021
6 683 30.8 0.045 848 25.5 0.030
8 714 41.0 0.057 963 34.0 0.035

12 765 61.5 0.080 1040 51.1 0.049
24/48 918 123.1 0.134 1152 192.0 0.167
6n/3n 2356 685.7 0.291 2279 533.3 0.234

48/96 1 739 5.0 0.007 794 4.0 0.005
2 750 10.0 0.013 857 8.0 0.009
3 763 15.0 0.020 884 12.0 0.014
4 781 20.0 0.026 932 16.0 0.017
6 804 30.0 0.037 961 24.0 0.025
8 839 40.0 0.048 1081 32.0 0.030

12 898 60.0 0.067 1167 48.0 0.041
24/48 1062 120.0 0.113 1254 177.8 0.142
6n/4n 2788 685.7 0.246 2867 685.7 0.239

64/96 1 809 4.4 0.005 860 3.6 0.004
2 815 8.9 0.011 918 7.3 0.008
4 838 17.8 0.021 984 14.5 0.015
8 891 35.6 0.040 1095 29.1 0.027

16 1004 71.1 0.071 1338 58.2 0.044
32/64 1213 142.2 0.117 1522 220.7 0.145
6n/3n 3124 800.0 0.256 2991 640.0 0.214

Continued on next page

XVI

block/
key size

bits/
cycle

area
(GE)

tput
(kbps)

eff area
(GE)

tput
(kbps)

eff

64/128 1 958 4.2 0.004 996 3.4 0.003
2 968 8.3 0.009 1058 6.9 0.007
4 1000 16.7 0.017 1127 13.8 0.012
8 1057 33.3 0.032 1247 27.6 0.022

16 1185 66.7 0.056 1506 55.2 0.037
32/64 1415 133.3 0.094 1658 206.5 0.125
5n/3n 3290 640.0 0.195 3120 640.0 0.205

96/96 1 955 3.7 0.004 1012 3.4 0.003
2 965 7.4 0.008 1067 6.9 0.006
3 971 11.1 0.011 1089 10.3 0.009
4 984 14.8 0.015 1134 13.8 0.012
6 1007 22.2 0.022 1157 20.7 0.018
8 1037 29.6 0.029 1267 27.6 0.022

12 1088 44.4 0.041 1328 41.4 0.031
16 1151 59.3 0.052 1514 55.2 0.036
24 1263 88.9 0.070 1673 82.8 0.049

48/96 1580 177.8 0.113 2058 320.0 0.155
6n/3n 4372 960.0 0.220 4229 872.7 0.206

96/144 1 1160 3.5 0.003 1217 3.3 0.003
2 1169 7.0 0.006 1269 6.6 0.005
3 1175 10.5 0.009 1297 9.8 0.008
4 1189 14.0 0.012 1345 13.1 0.010
6 1211 21.0 0.017 1371 19.7 0.014
8 1242 28.1 0.023 1485 26.2 0.018

12 1292 42.1 0.033 1558 39.3 0.025
16 1354 56.1 0.041 1751 52.5 0.030
24 1467 84.2 0.057 1928 78.7 0.041

48/96 1784 168.4 0.094 2262 300.0 0.133
6n/3n 4660 960.0 0.206 4481 872.7 0.195

128/128 1 1234 2.9 0.002 1280 3.0 0.002
2 1242 5.7 0.005 1338 6.1 0.005
4 1263 11.4 0.009 1396 12.1 0.009
8 1317 22.9 0.017 1488 24.2 0.016

16 1430 45.7 0.032 1711 48.5 0.028
32 1665 91.4 0.055 2179 97.0 0.045

64/128 2090 182.9 0.088 2727 376.5 0.138
6n/3n 5820 984.6 0.169 5527 1066.7 0.193

Continued on next page

XVII

block/
key size

bits/
cycle

area
(GE)

tput
(kbps)

eff area
(GE)

tput
(kbps)

eff

128/192 1 1508 2.8 0.002 1566 2.9 0.002
2 1514 5.6 0.004 1627 5.8 0.004
4 1536 11.1 0.007 1687 11.6 0.007
8 1587 22.2 0.014 1797 23.2 0.013

16 1700 44.4 0.026 2038 46.4 0.023
32 1937 88.9 0.046 2536 92.8 0.037

64/128 2369 177.8 0.075 3012 355.6 0.118
6n/3n 6204 984.6 0.159 5859 1066.7 0.182

128/256 1 1782 2.6 0.001 1840 2.8 0.002
2 1792 5.3 0.003 1901 5.6 0.003
4 1823 10.5 0.006 1967 11.1 0.006
8 1883 21.1 0.011 2087 22.2 0.011

16 2010 42.1 0.021 2341 44.4 0.019
32 2272 84.2 0.037 2872 88.9 0.031

64/128 2756 168.4 0.061 3284 336.8 0.103
6n/3n 7356 984.6 0.134 6480 984.6 0.152

Table 2 shows our results for several high-throughput versions of Simon
and Speck. We present data for a small iterated version with reasonably high
efficiency, a mid-sized partially unrolled version, our most efficient key-agile and
non-key-agile pipelined implementation. As area increases, we see corresponding
improvements in efficiency. But the reader should note that even the smallest
have quite high efficiencies, as compared to many existing algorithms.

In every case, the highest efficiency is to be had by fully pipelining, but the
resulting circuits are quite large, at least by “lightweight” standards, ranging up
into hundreds of thousands of gates.

We note that we have much more data, representing many different areas,
clock speeds, and efficiencies. Table 2 shows a representative sample.

The columns in Table 2 show the area in gate equivalents, the maximal
clock speed (clk) in MHz and the throughput (tput) in Mbps at that clock
speed, the efficiency (eff) in kbps/GE, rounds computed per clock cycle (rpc),
the number of pipeline stages (stg) (1 for an iterated implementation, 2 for a
version that can hold two full blocks and keys at a time, and the total number of
rounds for a fully pipelined implementation), and the average number of clock
cycles between cipher outputs (cyc), including any cycles necessary for loading.
The implementations shown, in order of increasing efficiency, are iterated, one-
round per clock (it); partially pipelined (pp); key-agile, fully pipelined (kap);
and non-key-agile, fully pipelined (nkap).

XVIII

Table 2: High-throughput ASIC performance for Simon and Speck,
0.13µm2 CMOS library.

algorithm area tput eff clk type rpc stg cyc

Simon32/64 902 589 653 625 it 1 1 34
2952 2079 704 715 pp 1 3 11

15918 16933 1064 529 kap 2 16 1
12914 21691 1680 678 nkap 1 32 1

Speck32/64 970 368 379 299 it 1 1 26
4413 2567 582 481 pp 1 4 6

24089 16737 695 523 kap 1 22 1
14044 16277 1159 509 nkap 1 22 1

Simon48/72 1067 843 790 667 it 1 1 38
4531 3693 815 769 pp 1 4 10

33224 41121 1238 857 kap 1 36 1
21202 32618 1538 680 nkap 1 36 1

Speck48/72 1555 706 454 368 it 1 1 25
5625 3192 568 399 pp 1 4 6

27025 19101 707 398 kap 1 22 1
17571 18670 1063 389 nkap 1 22 1

Simon48/96 1344 790 587 625 it 1 1 38
8793 5647 642 588 pp 2 4 5

26249 25418 968 530 kap 2 18 1
21477 32426 1510 676 nkap 1 36 1

Speck48/96 1929 764 396 429 it 1 1 27
7036 3711 527 464 pp 1 4 6

29318 18384 627 383 kap 1 23 1
23865 22947 962 478 nkap 1 23 1

Simon64/96 1417 970 685 667 it 1 1 44
5762 4156 721 714 pp 1 4 11

32426 33870 1045 529 kap 2 21 1
32685 43782 1340 684 nkap 1 42 1

Speck64/96 1887 678 359 307 it 1 1 29
6668 3078 462 433 pp 1 3 9

42869 23872 557 373 kap 1 26 1
28113 23625 840 369 nkap 1 26 1

Simon64/128 1751 870 497 625 it 1 1 46
5518 3048 552 714 pp 1 3 15

44322 34243 773 535 kap 2 22 1
35187 44208 1256 691 nkap 1 44 1

Speck64/128 2014 634 315 307 it 1 1 31
4974 1916 385 419 pp 1 2 14

48056 23908 498 374 kap 1 27 1
28949 23214 802 363 nkap 1 27 1

Simon96/96 1780 1127 633 634 it 1 1 54
7692 5275 686 769 pp 1 4 14

55488 50794 915 529 kap 2 26 1
59801 65355 1093 681 nkap 1 52 1

Continued on next page

XIX

algorithm area tput eff clk type rpc stg cyc

Speck96/96 2678 964 360 301 it 1 1 30
7484 3160 422 329 pp 1 3 10

62211 31673 509 330 kap 1 28 1
55456 39393 710 410 nkap 1 28 1

Simon96/144 1982 1084 547 632 it 1 1 56
23640 14310 605 596 pp 2 7 4
98065 80341 819 837 kap 1 54 1
62432 65538 1050 683 nkap 1 54 1

Speck96/144 3294 1045 317 348 it 1 1 32
8746 3391 388 353 pp 1 3 10

69484 31641 455 330 kap 1 29 1
51254 35608 695 371 nkap 1 29 1

Simon128/128 2342 1145 489 626 it 1 1 70
7279 3980 547 715 pp 1 3 23

146287 106961 731 836 kap 1 68 1
104790 87798 838 686 nkap 1 68 1

Speck128/128 3290 880 268 234 it 1 1 34
9662 3531 365 303 pp 1 3 11

98003 41531 424 324 kap 1 32 1
81153 49117 605 384 nkap 1 32 1

Simon128/192 2774 1202 433 667 it 1 1 71
17069 8033 471 565 pp 2 4 9

166772 106943 641 835 kap 1 69 1
111037 95104 857 743 nkap 1 69 1

Speck128/192 4343 1159 267 326 it 1 1 36
7937 2439 307 324 pp 1 2 17

110960 42384 382 331 kap 1 33 1
71877 41304 575 323 nkap 1 33 1

Simon128/256 3419 1081 316 625 it 1 1 74
42368 14830 350 579 pp 2 8 5

233204 100078 429 782 kap 1 72 1
110875 87193 786 681 nkap 1 72 1

Speck128/256 5159 1287 249 382 it 1 1 38
18742 5618 300 307 pp 1 5 7

123074 42356 344 331 kap 1 34 1
70280 39483 562 308 nkap 1 34 1

